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1. Supplementary Material Overview

In the following supplementary material, we first provide the implementation details of our proposed approach (Sec. 2).
Then we describe the details of comparison methods and ablation studies (Sec. 3). Finally, we provide additional experiments
and empirical analysis (Sec. 4).

2. Implementation Details
2.1. Architecture: Darkening Module

The architecture of our learnable darkening module is a U-Net [23] with three downsampling and three upsampling layers,
as shown in Figure 1.

For all vision tasks, we train the darkening module on the corresponding daytime dataset. The input exposure map has
identical entries uniformly sampled from [0, 0.5]. Loss weights are set to )\“gm = 0.1, Ae—eap = 10, Aeor = 25, Ay, = 1600,
Aflex = 5, and o in Ly, is set to 0.02. We use a single RTX 2080 Ti GPU for training.

When synthesizing nighttime images, the exposure map FE’ is first initialized with identical entries uniformly sampled
between [0, 0.2] to simulate nighttime illumination. Then, we inject both pixel-wise and patch-wise to F’, i.e.,

E' =U(0,0.2) + 21 + 22, ()



where
Z1 € R ~ N(O, 041), ()

is the pixel-wise Gaussian noise, and
_ h ow
Zo € Rad ~ N(0, az),

zo = interpolate(Za, h, w),

3)

is the patch-wise Gaussian noise. h,w is the input’s height and width, d the downsampling scale, and a1, @y the noise
intensity. Both a1 and v are set to 0.025.
Note that the above settings are task-agnostic, i.e., shared across all tasks.
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Figure 1. Network architecture of our darkening module.

2.2. Architecture: BYOL Heads

The BYOL [10] head consists of a projection head ¢, ¢’s duplicate ¢, and a prediction head z. Both g and z are MLPs
with a single hidden layer, except that we prepend a convolutional block before ¢ in the segmentation task. This extended
version is denoted by “BYOL Conv head”. The architecture of these modules is shown in Figure 2. Note that BYOL heads
are only used in the adaptation stage.

2.3. Implementation: Nighttime Image Classification

For image classification, we adopt the ResNet-18 [1 1] backbone (w/o ImageNet [7] pre-train). Features for similarity
losses are extracted after the global average pooling layer, as shown in Figure 3a. The downsampling scale d in Eq. (3) is set
to 16. We train the darkening module for 15 epochs by SGD optimizer with an initial learning rate of 0.0001 and decays at
the 5, 10" epoch by 0.1. The batch size is set to 16.

In the adaptation stage, the BYOL head is appended after the global average pooling layer. Loss weights are set to
A;?m = 0.1 and A5 = 1. We train the model for 90 epochs with SGD optimizer, batch size 32, and initial learning rate
0.001. Learning rate decays at the 30", 60" epoch by 0.1. Data augmentations include resize-crop, horizontal flip, and color
jitter. We use a single RTX 2080Ti GPU for training.
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Figure 2. Network architecture of our BYOL heads.

2.4. Implementation: Nighttime Semantic Segmentation

We adopt the RefineNet [ 18] architecture with ResNet-101 backbone for semantic segmentation. Features are extracted
after each of the four ResNet blocks, as shown in Figure 3b. The downsampling scale d in Eq. (3) is set to 64. We train the
darkening module for 15 epochs by SGD optimizer with an initial learning rate of 0.0001, which decays at the 5", 10" epoch
by 0.1. Input images are cropped to 256 x 256. The batch size is set to 4.

In the adaptation stage, BYOL Conv heads are appended after all ResNet blocks. Loss weights are set to A3™ = 0.1 and
Atask = 1. We train the model for 100 epochs with SGD optimizer, batch size 4, and initial learning rate 0.001. Learning rate
decays at the 30", 60", and 90™ epoch by 0.1. All input images are resized to 1024 x 512 and then cropped to 768 x 384.
Other data augmentations include horizontal flip, color jitter, Gaussian blur, and cutout [8]. We use two RTX 2080Ti GPUs
for training. Due to the limit of computational resources, the nighttime data are generated in an offline manner, i.e., we
generate the nighttime dataset in advance instead of generating them during the training process.

2.5. Implementation: Visual Place Recognition

For visual place recognition, we adopt the GeM [22] framework with ResNet-101 backbone. Features are extracted after
the average pooling layer, as shown in Figure 3c. The downsampling scale d in Eq. (3) is set to 32. We train the darkening
module for 5000 iterations by SGD optimizer with an initial learning rate of 0.0001. Learning rate decays at the 1000, 3000
iteration by 0.1. The batch size is set to 8.

In the adaptation stage, we extend our method as follows. The original GeM framework receives a tuple of images
{p,q,n1,-- ,ni} as input, in which the query ¢ only matches p. In our implementation, we consider D(p) as an additional
matching for p, i.e., an input tuple contains two positive samples (instead of one) and k& negative samples. We train the model
for five epochs with Adam optimizer and learning rate 5 - 10~7. Other hyperparameters are identical to that of GeM.

2.6. Implementation: Low-Light Video Action Recognition

For low-light action recognition, we adopt the I3D [2] action recognizer based on 3D-ResNet [9], as shown in Figure 3d.
Features are extracted after the 3D average pooling layer. The downsampling scale d in Eq. (3) is set to 16. We train the
darkening module for 5000 iterations by SGD optimizer with an initial learning rate of 0.0001. Learning rate decays at the
1000™, 3000 iteration by 0.1. The batch size is set to 2.

In the adaptation stage, projection and prediction heads are appended after the 3D average pooling layer. Loss weights
are set to )\‘}im = 0.1 and A4y = 1. We train the whole model for 3- epochs with SGD optimizer, batch size 36, and initial
learning rate 0.01. Learning rate decays at the 20000, 40000 iteration by 0.1. Since we cannot access low-light data, we
use normal-light data’s mean and standard deviation values for input normalization. We follow [29] for data augmentation
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and hyperparameter settings. Due to the huge computational cost of synthesizing videos, we transfer videos to low light in
advance.

3. Benchmarking Details
3.1. Comparison Methods Settings

Table 1 shows the code sources of all comparison methods.

Table 1. The code sources of comparison methods.

Method | Link

EnlightenGAN [13] | https://github.com/VITA-Group/EnlightenGAN

Zero-DCE++ [16] https://github.com/Li-Chongyi/Zero-DCE_extension

RUAS [19] https://github.com/KarelZhang/RUAS

SCI [20] https://github.com/vis—opt—group/SCI

URetinexNet [28] https://github.com/andersonyong/uretinex—net

LEDNet [33] https://github.com/xiaoyufenfei/LEDNet

StableLLVE [30] https://github.com/zkawfanx/StableLLVE

SMOID [12] https://github.com/MichaelHYJiang/Learning-to-See-Moving-0Objects—in-the-Dark
SGZ [31] https://github.com/ShenZheng2000/Semantic-Guided-Low-Light-Image-Enhancement
IRM [1] https://github.com/thuml/Transfer-Learning-Library

MixStyle [32] https://github.com/thuml/Transfer-Learning—-Library

RobustNet [3] https://github.com/shachoi/RobustNet

SAN-SAW [21] https://github.com/leolyj/SAN-SAW

MAET [5] https://github.com/cuiziteng/ICCV_MAET

CIConv [15] https://github.com/Attila94/CIConv

ARID [29] https://github.com/xuyu0010/ARID_v1

GeM [22] https://github.com/Attila94/cnnimageretrieval-pytorch

For enhancement methods, we directly use their released enhancement models as a pre-processor to enhance the testing
images, then we apply the daytime baseline model. Same settings are adopted in [20, 27]. For other methods, we use their
pre-trained models if available. Otherwise, we run their code for re-implementation. We follow CIConv [15] and ARID [29]
for other benchmarking details.

3.2. Ablation Studies Settings

We compare our module D with heuristic and learnable darkening methods in Sec. 4.2 of the main text on classification
and Sec. 4.1 of the supplementary on segmentation. For heuristic methods, we implement them by randomly sampling a
darkening parameter in a fixed pre-defined range. We test various ranges and report the best performance. Specifically, we
use 3 = 2 for brightness adjustment (f(x) = 3 - x) and v = 3 for gamma correction (f(x) = 2%) in our implementation.

For the learnable methods, we test the gamma curve (f(z,a) = z=,a € (0,1]) and the reciprocal curve (f(z,a) =
d-a)z ¢ [0, 1)). For these two methods, we replace L;;, with the standard total variance loss (i.e., h(z) = x in L;4,) and

l—acx ?
use a lower learning rate due to their unstable training dynamics.

3.3. Implementation of MMD Statistics

Given a fixed feature extractor, we extract the features of all images from the “test-day” split and “test-night” split. Then
we calculate the Maximum Mean Discrepancy (MMD) between these two sets of features using Radical Basis Function
(RBF) kernel with bandwidth 10, 15, 20, and 50.
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4. Additional Experiments
4.1. Ablation Studies

Besides classification, we also ablate our method on the segmentation task (Nighttime Driving [6] and Dark-Zurich [24]).
The full results are shown in Table 2. Our proposed approach achieve the best results on all nighttime unseen target domains,
demonstrating the superiority of our framework.

Table 2. Ablation studies for module D and similarity losses on classification (CODaN [15]) and segmentation (Nighttime Driving [6] and
Dark-Zurich [24]). We report Top-1 accuracy for the former and mloU for the latter.

Category ‘ Method ‘ CODaN ‘ Nighttime Driving ‘ Dark-Zurich
Baseline | - | 5332 | 343 | 306
Module D Brightness adjustment 57.96 42.8 37.0
Heuristic Gamma correction 63.96 40.4 35.1
Module D Reciprocal curve 62.60 43.3 39.5
Learnable Gamma curve 64.16 38.7 33.8
oo w/o L35™ and LF™ 64.08 403 37.4
igg;lamy wio L35 64.56 024 39.5
wlo L™ 64.88 43.0 39.4
Full version | - | 6587 | 44.9 | 402

4.2. Empirical Analysis on Nighttime Image Classification

T-SNE Clustering Visualization. Firstly, we visualize images’ features extracted by the original daytime model and our
adapted model on CODaN [15]. Red, blue, and green dots stand for the feature of daytime, synthesized nighttime, and real
nighttime images, respectively.
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Figure 4. t-SNE [26] visualization of images’ features extracted by the original daytime model (left) and our adapted model on CODaN [15]
(right). Red, blue, and green dots stand for the feature of daytime, synthesized nighttime, and real nighttime images, respectively. Zoom in
for better visual quality.



As shown in the left of each group in Figure 4, the synthetic nighttime images (green dots) are very similar to the real-
world nighttime images (blue dots) on the feature-level. Besides, by comparing the red and blue dots, we find our method
could significantly reduce the feature-level gap between daytime and nighttime images, indicating our model’s effectiveness
in the night time.

Saliency Map Visualization. We visualize the saliency map of images generated by our proposed darkening module D
trained with and without £5i™ using XRAI [14] in Figure 5. The brighter the region’s color, the greater importance that the
model attaches. Compared with D trained without £§:™, we find introducing £5™ to the training process could enable D
to fool the daytime classifier, thus providing more valuable knowledge for the subsequent adaptation stage. For example, the
image on the left illustrates a cup in front of a computer screen. In the original image, the classifier responds notably to the
cup and outputs the correct category. Then we darken the image by module D trained without £5¢™. Although the image’s
appearance is drastically changed, the classifier can still determine the cup’s appearance and make the correct prediction. This
phenomenon indicates that simply reducing the illumination without considering machine vision is inadequate in changing
the image’s feature response, thus providing limited benefit for day-night adaptation. On the other hand, adding £5™ to D
could induce semantic shifts despite the darkened results seeming identical, thus disabling the classifier to locate the correct
region.

Prediction: cup Prediction: cup Prediction: chair Prediction: bottle ~ Prediction: bottle Prediction: chair
(a) Original (b) wio L™ (c) w/ LE™ (a) Original (b) wio L™ (c) w/ LE™

Figure 5. Saliency maps of a daytime classifier on different images. The brighter the region’s color, the greater importance that the model

attaches. In each group, three columns represent the original image, darkened images generated by D trained w/o £3™, and w/ L3™,
respectively.

Cross-Architectual Analysis We study the effect of using different model architectures for image-level darkening and
model-level adaptation. Specifically, we try two alternate model architectures: VGG16 and AlexNet, for darkening and
keeping the model-level backbone as ResNet-18. The accuracy is 63.52% and 62.28%, respectively, which are slightly worse
than dropping the similarity loss L5 (64.56%), but significantly outperforming the baseline (53.32%). These results show
that our model-level stage remains effective under the cross-architecture scenario.

4.3. Results on Nighttime Segmentation

Quantitative Segmentation Results. Additional results on the source daytime domain are provided in Table 3. Our
approach does not attenuate and even improve the model’s performance in the daytime, justifying that contrastive learning in
the model-level adaptation stage not only narrows the day-night domain gap and but also enhances the representation.

The per-class IoU (Intersection over Union) scores on Dark-Zurich [24] are shown in Table 4. Our method improves
segmentation results across nearly all classes.

We also evaluate our method on the NightCity dataset [25]. The mloU of the baseline (RefineNet [1&]), previous SoTA
(CIConv [15]), and ours are 23.0%, 25.1%, and 28.5%, respectively, which further justifies the superiority of our method.

Qualitative Segmentation Results. We provide additional qualitative segmentation results in Figures 6 and 7. We show
that low-light enhancement methods perform poorly on nighttime street scenes, thus yielding unsatisfactory results. On the



other hand, our method can better extract information hidden by the darkness and generate more accurate semantic maps.

4.4. Results on Visual Place Recognition

We provide additional qualitative visual place recognition results in Figure 8. Compared with the baseline model [22] that
often gets deceived by the nighttime appearance, our model can extract features more robust to illumination and thus retrieve
the correct daytime image showing the same scene as the query image.

4.5. Results on Low-Light Action Recognition

We provide qualitative video action recognition results in Figures 9 and 10. For instance, Figure 9 demonstrates a video
about a person running. All video enhancement methods perform poorly and therefore mislead the classifier. Meanwhile, our
adapted model correctly classifies the video with more than 99% confidence.

Table 3. Semantic segmentation results on Cityscapes [4] (daytime), Nighttime Driving [6] and Dark-Zurich [24], reported as mIoU scores.

Category ‘ Method ‘ Cityscapes  Nighttime Driving  Dark-Zurich
Baseline | RefineNet [15] | 669 343 30.6
EnlightenGAN [13] - 25.2 24.9
Zero-DCE++ [16] - 327 28.3
Low-Light RUAS [19] - 25.1 23.4
Enhancement SCI [20] - 28.6 25.7
URetinexNet [28] - 28.1 24.0
LEDNet [33] - 27.6 26.6
Domain AdaBN [17] 66.1 37.2 31.1
Generalization RobustNet [3] 715 33.0 345
SAN-SAW [21] 62.7 28.1 16.0
. MAET [5] 56.1 28.1 26.4
girr?lfig‘izaiﬂﬁht CIConv [15] 64.4 412 345
P Ours 69.1 44.9 40.2




Table 4. Pre-class segmentation result of the best trail on Dark-Zurich [24], reported as IoU.

~ (i 2= = 8 o = = & % g 3 % = é 3z
Method : ¥ 2 T & = 2 2 ¢ 5 % g 2 5 E B E &8 Z|%
RefineNet[15] | 862 348 62 26 128 309 144 277 384 100 3.1 383 345 491 60 00 554 311 204 | 30.6
URetinexNet [25] | 819 349 598 111 112 223 13 149 367 44 112 292 107 533 23 00 37 12 212|240
RUAS [19] | 738 252 586 79 99 208 22 65 374 33 56 293 272 47 138 00 417 128 209 | 234
ZeroDCE++[16] | 853 378 618 121 119 269 21 204 379 61 126 329 354 601 104 00 494 121 229 | 283
SCI [20] | 830 369 589 88 122 244 12 189 399 44 130 299 275 516 00 02 439 121 216|257
EnlightenGAN [13] | 719 251 590 94 122 230 35 33 424 28 158 327 270 516 7.1 00 528 141 196|249
LEDNet [33] | 778 328 618 112 142 299 46 59 481 57 320 430 107 401 16 00 501 150 200 | 266
AdaBN [17] | 859 385 629 237 116 310 121 236 390 115 37 421 371 550 61 00 603 222 245 |3L1
SAN-SAW[21] | 608 107 448 143 52 122 120 224 300 69 06 184 115 190 40 0.6 160 100 45 | 160
RobustNet [3] | 849 413 523 136 183 385 312 331 539 80 269 445 411 533 02 00 615 289 223|345
MAET [5] | 807 390 568 248 157 289 63 67 348 7.6 28 309 243 450 L1 02 454 407 99 | 264
CIConv [15] | 903 483 578 293 111 363 244 302 458 7.6 80 376 401 697 10. 00 550 374 160 | 345
Ours |89.7 520 672 325 148 394 104 347 469 118 373 465 448 760 586 00 553 300 204 | 405




(a) Input (b) Ground truth (c) RefineNet

(e) CIConv

(g) SCI (h) URetinexNet . () Zero-DCE++

Figure 6. Qualitative segmentation results on the Nighttime Driving [6] dataset. Comparison methods include baseline RefineNet [18],
zero-shot day-night adaptation methods [5, 15], and low-light enhancement methods [ 16,20, 28].



(a) Input (b) Ground truth (c) RefineNet

(2) SCI (h) URetinexNet ' (i) Zero-DCE++

Figure 7. Qualitative segmentation results on the Dark-Zurich [24] dataset. Comparison methods include baseline RefineNet [18], zero-
shot day-night adaptation methods [5, 15], and low-light enhancement methods [ 16,20, 28].



Figure 8. Qualitative Visual Place Retrieval Results. For each group, the query image is shown on the left; the first two images (i.e., two
images that have the highest similarity with the query image) are shown on the right. Compared with the baseline model GeM [22] that
often gets deceived by the nighttime appearance, our model can extract features more robust to illumination and thus retrieve the correct
daytime image showing the same scene as the query image.
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Figure 9. Qualitative low-light action recognition results. We compare our method with low-light video enhancement methods SGZ [31],
SMOID [12], and StableLLVE [30].
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Figure 10. Qualitative low-light action recognition results. We compare our method with low-light video enhancement methods SGZ [31],
SMOID [12], and StableLLVE [30].
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